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The integral H( u, u ) can be evaluated explicitly, to yield
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The second kind of integrals appear when one of the partial

elements is parallel to the Oxy plane, and the second one is
parallel to the Oyz plane. This is the case when one of the
elements belongs to one of the stips, or its image, while the other
element belongs to the via, or its image. If the first element

vertices are (xll, yll, zl), (xUl, Y/l, zl)j (xUl, YU1,zl), (x/l, YUl,zl),
and the second element vertices are (x2, y12,Z12), (X2, YU2,Z12),

(x’, Y.’, z.’ ), (x’, Y[’, z.’), then the integr~ to be evaluated has
the form

J
Y.2

“Z [( X- X2)2+ (Y-:)’+ (z1_z)2]I/2d~’d~dz~x (8)

Again, by introducing changes of variables t = y’ – y, t’ = y’,
the two integrals over y and y’ are reduced to only one integral
over t.That integral and the integral over, say x, can be evaluated
explicitly, thus yielding

G=f’dz ~ ~ aPbqH(uP, vq, z)
21 p=lq=l

(9)

where

and al=–l, a2=l, ul=lx{1–x21, u2 =lxU1–-X2I, and bq and

Vq are the same as defined with (6). The integral H( u, v, z) can

be integrated explicitly to yield
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and the remaining integral in (9) can be evaluated numerically.
Note that due to the reciprocity properties, ~,i, = L, t,, and

thus substantial savings in the computation are possible.
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Analyzing Lossy Radial-Line Stubs

STEVEN L. MARCH, MEMBER,IEEE

.4b.vtract — Equations for the design and anafysis of Iossless radial-line

stubs are available in the literature. However, when actually fabricated in

microstrip or s~tpline, these stubs possess finite conductor 10SS. This

attenuation must be included if these components are to be properly

integrated with other 10SSYtransmission-line elements as part of a micro-
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wave computer-aided design program, such as Super-Compact@. New equa-

tions for open-circuited radial-line stubs, which include the effects of

conductor loss. are presented.

I. INTRODUCTION

Lossless, radial transmission lines [1], [2] andradial-line stubs

[3]-[6] have been discussed in the literature. They have been used

for bias lines [3], [4], for impedance matching [5], and in low-pass

filters [6]. Equations for tie analysis of lossless radial-line stubs

have been presented by Vinding [6]. The geometry for the radial-

line stub isshownin Fig. l; r, isthe inner radius, ra is the stub

outer radius, and O is the angle (in radians) subtended by the

stub.

II. NEW EQUATIONS

The equations of Vinding (see Appendix) can be simplified,

resulting in the removaf of an inverse tangent function and the

formulation of a relatively simple equation. This new equation is

more appropriate than Vinding’s equations for the calculation of

the complex input impedance of a lossy radial-line stub. Using

the relationships

[ -1(58)1Jm(x) ‘/~COS tall

[ -’w?)]Nn, (x) ={~sin tan

and the identity

()

ta-l ; +tar-l(x)=;

the radial-line stub’s input impedance can be written as

Z,n=–j
120mh
—cot(kr,, kro).
r, Ofi

(1)

(2)

(3)

(4)

In (1) and (2), Jm ( x) is the Bessel function of the first kind of

order m and argument x, and N.(x) is the Neumann function

(Bessel function of the second kind) of order m. In (4), h is the

thickness of the microstrip substrate, c, is the substrate relative

permittivity and cot ( kr,, krO) is the large radid cotangent func-

tion given by [2]

NO(kr, )J1(krO) –Jo(k~)Nl(kr.)
(5)cot(kr, ~k%) = Jl(krt) N1(krO) –N1(kr, )Jl(kro) “

In (4) and (5), k is the phase constant in radians/unit length.

Defining

120mh
ZO(r, )=—

r, efi
(6)

as the radial-line characteristic impedance at a distance r,, (4) can

be rewritten as

Z,n=–jZO( r,)cot(kr,, krO). (7)

This equation is of the same form as the familiar equation for the

input impedance of a lossless, open-circuited, uniform transmis-

sion line, i.e.,

z m (umform) = – ~Zo cot( kl) (8)

Equation (7) is valid only for an ideal, lossless, radial-line stub.

Modifications to include the effects of attenuation can be easily

accomplished, so long as the losses are not very large. Substitute

for k, a complex propagation constant defined by

jk=a+j~ (9a)

Fig. 1. Radial-hne stub connected to a transmission line of width W.

or

k=&ja (9b)

where ~ is the phase constant and a is the attenuation constant

for the lossy radial transmission line.

If losses are small

and

R(r)

a= 2Zo(r)

(lOa)

(lOb)

where A. is the free-space wavelength.

Equation (lOb) does not include radiative losses nor the dielec-

tric loss contribution. The latter is usually very small compared to

ohmic losses.

Due to the nonuniform nature of the radial line, the series

resistance per unit length R(r) is a function of the radial dis-

tance. The series resistance per unit length can be expressed as

R(r). % (11)

where R, is the conductor surface resistivity in ohms per square.

From (6), the characteristic impedance at r is

Zo(r)=w.
refi

Combining (lOb) through (12) yields

(12)

(13)

This result is valid in planar circuits when the conductor loss

is considered small or reasonable. It would not be valid for ni-

chrome or tantalum nitride conductor metallizations.

In order to apply this result, the Bessel and Neumann func-

tions must be evaluated for complex arguments instead of real

arguments as normally encountered.

The Bessel function of a complex argument can be determined

by employing Neumann’s addition theorem [7]

.
Jm(u+ju)= ~ Jm_n(u)Jn(ju) (14a)

02

= ~ (-l)nJm_n(U)In( LI). (14b)

The identicaf formulation exists for Neumann functions, i.e.,

Nfi, (u+ju) = ~ (–l)nNm_,, (u)~,Z(0) (15)

where 1,,(v) is the modified Bessel function of the first kind
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which, by definition [8], is

Zn(u)=( –l)-n.ln(jv). (16)

For small arguments (V< 1) [9]

I_n(v)=I,,(u) =+(;)n. (17)

Combining (14b), (16), and (17), using only the n = – 1, n = O,
and n = + 1 terms of the summation in (14b), and using the
equality

J_n(zl)=(-l)nJn(u) (18)

results in

J~(U+jU) =Jm(U)+ $[J~_l(U)– Jm+l(U)] (19a)

=Jm(u)+jul;(u). (19b)

Equation (19b) is derived from (19a) by utilizing the recurrence

relation [10]

.lm_l(u)-Jm+l(u) =’2J;(r.J). (20)

JL ( u) is the derivative of Jm( u) with respect to u. Similarly

Nm(u+ju) =Nm(u)+juN; (u). (21)

Using two additional recurrence relationships

J~(u) = –Jl(u) (22a)

and’

J;(U) =JO(U)–+J1(U) (22b)

the resulting equations with the substitutions u = ~r and v = – w

are

Jo(h) = JO(/3r) + jcwJ1(flr) (23a)

[ 1.ll(~r)
.lI(kr) =J1(/3r)- jar Jo(&)-~ . (23b)

For the Neumann functions

NO( kr) = NO(~r) + jarN1(~r) (23c)

[

N1(/3r) 1Nl(kr) =N1(~r)– jar No(~r)–--jjy- . (23d)

The final analysis equations for radial-line stubs with attenuation
result from substituting (23a) through (23d), with the appropriate
arguments, into (5) and the latter, in turn, into (4).

III. I@CONiMENDATIONSFORSTRIPLINEAND MICROSTRIP

For stripline, the dimension h in (4), (6), (12), and (13) should
be replaced by the ground-plane spacing b.

For rnicrostrip, it is recommended that the relative dielectric
constant t, should be replaced by an effective dielectric constant
ce~~ calculated [11] for a microstnp of constant width w, where

o

()
w=(~+rO)sin ~ . (24)

A computer program has been written to test these equations
and to compare the results with the lossless formulation of
Vinding. For perfect conductors (R. = O), the results were identi.

1This approximation, while providing reasonably accurate results, is not the
formulation for effective dielectric constarrt used in Super-Compact.

cal. For finite values of surface resistance, the equations correctly

calculated both the resistive and reactive portions of the input

impedance.

IV. CONCLUSION

New equations, useful for the accurate calculation of the

complex input impedance of lossy, radial-line stubs, have been

presented. This should lead to an improvement in the accuracy of

the predicted performance of circuits which contain these ele-

ments.

APPENDIX

For completeness, the equations due to Vinding, using the

notation of this paper, are included below.

Zo(kri)lr cos[e(b,)-+(bo)]
Z,n = j

r,
(Al)

sin[+(~rt)–+(ko)l

[ I1207 Jj(kr, )+ Nj(k~) 1’2
Zo(kr,)= ~ Jf(kr,)+Nf(krl) (A2)

O(kr,) = t~-l[NO(kr,)/Jo( kr,)] (A3)

~(kr,) = tan-l [- J1(kr,)/Nl(kr,)] (A4)

$(kro) = tan-l[- J,(kro)/N,(kro)]. (A5)
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Plot of Modal Field Distribution in Rectangular and

Circular Waveguides

C. S. LEE, S. W. LEE, AND S. L. CHUANG

The earliest plots of modal field distribution in rectanguhu-/cir-
cular waveguides were given by Southworth (1936) [1], Barrow

(1936) [2], Schelkunoff (1937) [3], and Chu and Barrow (1937) [4].
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