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The integral H(u,v) can be evaluated explicitly, to yield
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The second kind of integrals appear when one of the partial
elements is parallel to the Oxy plane, and the second one is
parallel to the Oyz plane. This is the case when one of the
elements belongs to one of the stips, or its image, while the other
element belongs to the via, or its image. If the first element
vertices are (X1, Yn» 21)s (¥,05 Vs 21)s (X5 Y 21)s (X5 P> 21)s
and the second element vertices are (X5, Y15, 252), (X2, Y25 Z12)s
(X35 Vy2s Zu2)s (X2, Y125 2,2), then the integral to be evaluated has
the form
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Again, by introducing changes of variables t= y’~ y, ¢/ =y,
the two integrals over y and y’ are reduced to only one integral
over t. That integral and the integral over, say x, can be evaluated
explicitly, thus yielding
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and a;=—1,a,=1,u =|x; — X3}, u; =|x,; ~ X,|, and b, and

v, are the same as defined with (6). The integral H(u,v,z) can
be integrated explicitly to yield
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and the remaining integral in (9) can be evaluated numerically.
Note that due to the reciprocity properties, L, = L,,, and

1§’ 1’1

thus substantial savings in the computation are possible.
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Analyzing Lossy Radial-Line Stubs
STEVEN L. MARCH, MEMBER, IEEE

Abstract —Equations for the design and analysis of lossless radial-line
stubs are available in the literature. However, when actually fabricated in
microstrip or stripline, these stubs possess finite conductor loss. This
attenuation must be included if these components are to be properly
integrated with other lossy transmission-line elements as part of a micro-
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wave computer-aided design program, such as Super-Compact®. New equa-
tions for open-circuited radial-line stubs, which include the effects of
conductor loss, are presented.

I. INTRODUCTION

Lossless, radial transmission lines [1], [2] and radial-line stubs
[3}-[6] have been discussed in the literature. They have been used
for bias lines [3], [4], for impedance matching [5], and in low-pass
filters [6]. Equations for the analysis of lossless radial-line stubs
have been presented by Vinding [6]. The geometry for the radial-
line stub is shown in Fig. 1; v, is the inner radius, r, is the stub
outer radius, and # is the angle (in radians) subtended by the
stub.

II. N=w EQUATIONS

The equations of Vinding (see Appendix) can be simplified,
resulting in the removal of an inverse tangent function and the
formulation of a relatively simple equation. This new equation is
more appropriate than Vinding’s equations for the calculation of
the complex input impedance of a lossy radial-line stub. Using
the relationships

Ju(x) =yJ2(x)+ NX(x cos[tan_l(]jm(z)” (§)]
N, (x) ={J2(x)+ Ni(x sin[tan_l(]jm(;c)))] 2

and the identity

N’

3

-1 7
g Y [ -1 =
tan ( . )+tan (x) 5
the radial-line stub’s input impedance can be written as

1207h
Zm =—J

cot(kr,, kry). (4
In (1) and (2), J,,(x) is the Bessel function of the first kind of
order m and argument x, and N, (x) is the Neumann function
(Bessel function of the second kind) of order m. In (4), h is the
thickness of the microstrip substrate, €, is the substrate relative
permittivity and cot(kr,, kr,) is the large radial cotangent func-
tion given by [2]
No(krl)‘ll(kro)_‘]o(krt)Nl(kro) (5)
Jl(krl)Nl(kro)_Nl(krz)‘jl(kro) ’

In (4) and (5), k is the phase constant in radians/unit length.
Defining

cot( kr,, kr,) =

1207h

r8/e,

as the radial-line characteristic impedance at a distance #,, (4) can
be rewritten as

Zy(r) = (6)

Zln=_jZ()(r1)COt(krl’kro)' (7)

This equation is of the same form as the familiar equation for the
input impedance of a lossless, open-circuited, uniform transmis-
sion line, i.e.,

Zm (uniform) — jZO COt( kl) .

(8)
Equation (7) is valid only for an ideal, lossless, radial-line stub.
Modifications to include the effects of attenuation can be easily
accomplished, so long as the losses are not very large. Substitute
for k, a complex propagation constant defined by

jk=a+ jB

(92)
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Radial-line stub connected to a transmission line of width W.

Fig. 1.

or

k=B—-ja (9b)

" where B is the phase constant and « is the attenuation constant

for the lossy radial transmission line.
If losses are small

p= 3 (10a)
and
__R()
a= 22,(1) (10b)

where A, is the free-space wavelength.

Equation (10b) does not include radiative losses nor the dielec-
tric loss contribution. The latter is usually very small compared to
ohmic losses.

Due to the nonuniform nature of the radial line, the series
resistance per unit length R(r) is a function of the radial dis-
tance. The series resistance per unit length can be expressed as

R(r) =22 (11)

r
where R, is the conductor surface resistivity in ohms per square.
From (6), the characteristic impedance at r is

1207h
Zy(r) = (12)
N
Combining (10b) through (12) yields
R\/¢,
T 1207k (13)

This result is valid in planar circuits when the conductor loss
is considered small or reasonable. It would not be valid for ni-
chrome or tantalum nitride conductor metallizations.

In order to apply this result, the Bessel and Neumann func-
tions must be evaluated for complex arguments instead of real
arguments as normally encountered.

The Bessel function of a complex argument can be determined
by employing Neumann’s addition theorem [7]

(o]
Ta(u+joy="2 T (w)J,(jv) (142)
n=-—o0

oo

= X (D", () IL(v).

n=—o0

(14b)
The identical formulation exists for Neumann functions, i.e.,

(-D'N,_, () 1,(v)  (15)

oo

N (u+jjp)y= 3

n=—o0

where I,(v) is the modified Bessel function of the first kind
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which, by definition [8], is
L(v)=(-1)""J,(jv).
For small arguments (V <1) [9]
1/v\"
() =1,(2)=:(5) (17)

Combining (14b), (16), and (17), using only the n=—1, n=0,
and n=+1 terms of the summation in (14b), and using the
equality

(16)

I_p(v)=(=1)"J,(v) (18)

results in
Tt jo) = () 4+ D F ()= T ()] (199)
=J,(u)+ ju,(u). (19b)

Equation (19b) is denved from (19a) by utilizing the recurrence
relation [10]

Tu1(#) = T 1(u) =27, (u).
J; (w) is the derivative of J,,(u) with respect to . Similarly
N, (u+ jo)y =N, (u)+ jo

N (u).

Using two additional recurrence relationships

Ji(u) =—J(u)

(20)
(21)

(22a)

“

and

HORTIOREIAC) (220)

the resulting equations with the substitutions # = Br and v = — ar
are

Jo(kr) =J,(Br)+ jarJ (Br) (23a)
R(kr) = 5(8r) jar | () -2 | o)

For the Neumann functions
Ny(kr) = Ny(Br)+ jarN,(Br)

(ko) = M) - e (8- 222 asa)

(23¢)

The final analysis equations for radial-line stubs with attenuation
result from substituting (23a) through (23d), with the appropriate
arguments, into (5) and the latter, in turn, into (4).

III. RECOMMENDATIONS FOR STRIPLINE AND MICROSTRIP

For stripline, the dimension 4 in (4), (6), (12), and (13) should
be replaced by the ground-plane spacing b.

For microstrip, it is recommended® that the relative dielectric
constant ¢, should be replaced by an effective dielectric constant
€. calculated [11] for a microstrip of constant width w, where

w=(r,+ro)sin(%). (2%

A computer program has been written to test these equations
and to compare the results with the lossless formulation of
Vinding. For perfect conductors (R, = 0), the results were identi-

1This approximation, while providing reasonably accurate results, is not the
formulation for effective dielectric constant used in Super-Compact.

27

cal. For finite values of surface resistance, the equations correctly
calculated both the resistive and reactive portions of the input
impedance.

IV. CONCLUSION

New equations, useful for the accurate calculation of the
complex input impedance of lossy, radial-line stubs, have been
presented. This should lead to an improvement in the accuracy of
the predicted performance of circuits which contain these ele-
ments.

APPENDIX

For completeness, the equations due to Vinding, using the
notation of this paper, are included below.

Zy(kn) b cos[ 8(kn) = ¢(k7)]

Eo =TT Sl Wk~ (k) A
1207 | B(kr)+ NG (kr) |

Zo (k) = /e [Jl(kr)—i—N(kr)} (A2)

0(kr,) = tan™' [ Ng(kr,) /Jo (kr,)] (A3)

Y(kr) =tan"'[ - J,(kr,) /Ny (kr,)] (A4)

‘P(kro) = tanvl[——Jl(kro)/Nl(kro)]' (AS)
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Plot of Modal Field Distribution in Rectangular and
Circular Waveguides

C. S.LEE, 8. W. LEE, anD 8. L. CHUANG

The earliest plots of modal field distribution in rectangular /cir-
cular waveguides were given by Southworth (1936) [1], Barrow
(1936) [2], Schelkunoff (1937) [3], and Chu and Barrow (1937) [4].
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